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ABSTRACT 

We generalize Witten’s calculation of the photon structure function FzY to 

the next to the leading order of asymptotic freedom. Except for the second 

moment of Fl the result is independent of the unknown matrix elements of quark 

and gluon operators between the photon states. The non-leading corrections turn 

out to be large. 
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I. INTRODUCTION 

It is well known by now that asymptotic freedom predictions 192 as calculated 

in the leading order of the effective coupling constant are consistent3 with the 

scaling violations observed in deep-inelastic data. The theoretical calculations 

needed to obtain these leading order predictions are rather straightforward and 

have been obtained already several years ago.‘p2 On the other hand, the 

calculations of the next to the leading order asymptotic freedom effects are much 

more involved and have only been studied during the past two years. 4-9 These next 

to the leading order effects are now theoretically well understood although their 

detailed confrontation with the data remains to be done. 

So far the calculations of higher order corrections have concentrated on 

deep-inelastic scattering off hadronic targets. In spite of the fact that corrections 

in question are not small they can be absorbed to a large extent in the redefinition 

of the parameter A, the sole free parameter of the theory.6 The phenomenological 

study of higher order corrections is complicated by the fact that any asymptotic 

freedom expression for the hadronic deep inelastic structure functions involves 

matrix elements of local operators between hadronic states which are uncalculable 

by present methods. These matrix elements must be treated as free parameters in 

fitting data. Since the magnitude of higher order corrections varies only slowly 

with Q2 some of the higher order effects can be absorbed (in the range of Q2 

available experimentally) in the unknown matrix elements in question. 6 It is 

therefore of interest to look for processes which at least in the first few orders in 

the effective coupling constant are free of the unknown matrix elements of local 

operators. 

One such process is the deep-inelastic scattering off photon targets. This 

process can be studied in e+e- collisions 10 as shown in Fig. 1 where one of the 

virtual photons is very far off-shell (large Q2) and the other one is close to the 

mass-shell (small p2). 
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In QCD the process of Fig. 1 has been analyzed by Witten 
II using operator 

product expansion and renormalization group methods. He has obtained definite 

predictions for the photon structure functions which in the leading order of 

asymptotic freedom are independent of the unknown hadronic matrix elements. 

The asymptotic freedom result for the shape of the photon structure function F2’, 

differs substantially from simple parton model predictions. 12,13 Witten’s result has 

been recently rederived by Llewellyn-Smith14 in the framework of the perturbative 

QCO and by de Witt et al.15 and Brodsky et al.16 in the framework of Altarelli- 

Parisi approach.17 For a recent review of the phenomenological implications of 

these results we refer the interested reader to refs. I4 and 16. 

If we write generally the moments of F2Y(x, Q2) 

dx xn-2 FZY(x, Q*) = an In + 2” In In 2 
0 A2 

, (1.1) 

then what Witten has calculated are the coefficients a,. 

In this paper we shall extend Witten’s calculation to higher orders and 

evaluate the constants 5n and b,. As observed by Witten 11 the constants bn and “an 

do not depend on the unknown matrix elements of local operators except for b2. 1n 

other words for the first three terms in the expansion in equation (1.1) we obtain 

for n > 2 definite asymptotic freedom predictions in terms of a single free 

parameter A. For n = 2 there is an additional free parameter in b2 which involves 

the photon matrix element of the hadronic energy momentum tensor. 

It is obvious from the above that the process under consideration is, from a 

theoretical point of view, an excellent place to study properties of higher order 

corrections. Unfortunately experimental tests of our results may, prove to be 

difficult. 
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Our paper is organized as follows. In Section II and following Witten we 

derive a formal expression for the moments of F2Y valid to any order in the 

effective quark gluon coupling g2 and to first order in the electromagnetic coupling 

2 e . Using this expression we find in Section III the parameters an, bn and in of 

equation (1.1) in terms of one loop and two-loop anomalous dimensions, one loop 

and two loop contributions to the S-function and one-loop corrections to the Wilson 

coefficient functions. Section IV contains all information needed for the numerical 

evaluation of the parameters an, an and bn. Numerical results and their discussion 

are presented in Section V. For completeness we include formulae for the 

longitudinal photon structure function in Section VI. Section VII contains a brief 

summary of our paper. 

II. BASIC FORMALISM 

In the short distance analysis the moments of the photon structure function 

F2Y(x, Q2) are given as follows 18 

.f dx x”-~F~‘(x, Q*) = ; Ci ( $ , g2,0) <vtq lY> (2.11 

where Q2 = -q2, x is the Bjorken variable, g2 is the renormalized strong coupling 

constant, $ 
2 

is the subtraction scale at which the theory is renormalized and o = Q 4ll 

is the electromagnetic coupling constant. The sum on the r.h.s. of equation (2.11 

runs over spin n, twist 2 operators such as fermion non-singlet operator ONs, 

singlet fermion and gluon operators 0 
JI 

and OC and photon operator Or. The latter 

operator which is not present in the deep-inelastic scattering off hadronic targets, 

is the analog of the gluon operator OC with the non-abelian field strength tensor 

G nB replaced by the electromagnetic tensor Foe . As noted by Witten, I1 0 
Y must 

be included in the analysis of photon-photon scattering. The reason is that although 

the Wilson coefficients Cy are O(o) the %atrix elements <y ( 0; 1 y> are O(l). 
n 
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Therefore the photon contribution in equation (2.1) is of the same order in a as the 

contributions of quark and gluon operators. The latter have Wilson coefficients 

O(1) but matrix elements in photon states O(I$. We want to evaluate equation (2.1) 

to lowest order in a but to all orders in g. 

In what follows it will be useful to work with matrix notation. The 

coefficient functions are described by the column vector 

c lir Q5,g2,. ” ( > u2 

cGQ1 2 
n 

( > 
29g 9a u 

,liSQI 2 

( > 
2,g ?a lJ 

c y Qf,g2,a 
nc > 
n 

u2 

(2.2) 

The renormaljzation group equation which governs the Q2 dependence of En can be 

then to lowest order in Q. written as follows 

’ &+B(g)&) ‘&g’~) = yn&d~n($g2,~) (2.3) 

where yn(g2, CL) is the anomalous dimension matrix whose elements are equal to the 

elements of the transposed anomalous dimension matrix as defined by Gross and 

Wilczek.’ To lowest order in a this matrix has the form 

Yn(g2,a) = 
[2:l”?, I] 

(2.4) 

with qn(g2) being the standard hadronic anczmalous dimension matrix 
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7 

i 

Y& k2) Y ; Jg’) 0 

^un(g2) = Y;Jg2) Y ic(g2) 0 

0 0 Y&k2) 
I 

(2.5) 

+ 2 and K(g , a) standing for the three component row vector 

iLK,(g2, a) = C $k2, a), K”,(g2,a ), K&(g2,a) 1 . (2.6) 

The vector gn represents the mixing between the photon operator and the 

remaining three operators. In the notation of equation (2.5), its components are 

YGr ’ YG n y andYiSy. We prefer however to use separate notation for the mixing in 

question because it depends on both g and a. It is also the notation of Witten.‘l 

The solution of (2.3) is given by If2 

‘n($fg2ra) = [T exP JiQ2)dg”&] ?,,(1,i2,,) (2.7) 

with s2 being the effective strong interaction coupling constant which satisfies the 

following equation 

g = s 8($ ; ic(t = 0) = g . (2.8) 

Here t = In Q- J. The T ordering in equation (2.7) is necessary because 

1 
y(Q$, 

Y (Q$ f 0 and is defined as follows 
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T exp [/:dg’$]= 1 + ,,“dg’& 

+ imgdg’ j-~g”g”+$$ & + . . . 
g 

Writing the T ordered exponential as 

T ew 

where Mn is a 3 by 3 matrix and $,, is a three component row vector we find from 

(2.4) and (2.10) 

Mn($,g2) = Texp [ Igdg’$$] 

and 

“K (g2,a 1 ; &12) 
= Iwgde’kT exp I g’dg”,-&ig- . 

g 2 

On the other hand equations (2.11, (2.7) and (2.10) give 

JoI,, xn-2 F2b, Q2) = f <y, 0: ,r’(M,($ ,g2)+,&d) i 

?“(I, g2’, a) + EnY(l, z2, a) 

where i now runs over $, G and NS and 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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c$ !g2,a) 
1,(1, .g2, a) : 

I I 
c$, i2, a) 
Cf;‘?l, g2, a) 

(2.14) 

In addition we have used the fact that 

<YIOylY> = 1 (2.15) 

Equation (2.13) is valid to any order in the effective coupling constant g2 and to the 

first order in a. The only unknown quantities in equation (2.13) are the matrix 

elements <y ( 0: 1 y>. Fortunately due to asymptotic freedom the sum 1 in 
i 

equation (2.131, except for n = 2, goes to zero for large Q2 as in the case of deep 

inelastic scattering on hadronic targets. It then follows11 that the parameters an 

and sn for all n and bn for n > 2 can be found by evaluating the last two terms of 

equation (2.13). We shall now evaluate these terms and consequently a,,, gr, and bn. 

III. PHOTON STRUCTURE FUNCTION BEYOND THE LEADING ORDER 

We begin with the evaluation of the T 
i-s 

ordered exponential which enters 

equation (2.12). We first expand the anomalous dimension matrix ;,.,(g2) in powers 

y”(g) = y.9 92 (I)+ g4 
‘I I1 16rr2 

+ Yij + . . . i,j = +, G (3.1) 

(3.2) 

Then writing in an obvious notation 
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; &g2) = $g2) + ?;)(g2) + . . . (3.3) 

and using equation (2.9) we obtain neglecting terms O(2) 

52 
T exp j- 

Tn(gt2) 
dg’m = exp 

? O(g12) 
ldgd t n 

g ggT@- + 1 
+ .fgdg’exp 

? o(g”2) ; (qg’2) v O(gov2) 

z 
I gdg” +iy 
g’ I 

+j- ew 1 pldg” b 1 . (3.4) 

To proceed further we evaluate 

ew f 
81 ? ;(g2) 

g2 
dc3@T- 

I 

which appears three times in equation (3.4). This is easily done by writing 

(3.5) 

T,o(g2, = 2- I: A ;P; 
uh2 I 

(3.6) 

-0 where Ai are the eigenvalues of the matrix y n and P! are the corresponding 
1 

projection operators. Explicitly 

PY= 1 
A;- “2 

L 

Y;k;” 

0 

1 
0 0 

PkS = 0 0 

Lo 0 

Yc”;” 0 

YCG 04 -hi 0 , (3.7) 

0 0 

1 

0 

0 

1 1 , (3.8) 
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(3.9) 

and 

Using the known properties of the projection operators 

I 

0 ifj 

PlPjn = 

P; i=j 

and expanding 6 (g) as follows 

(3.10) 

(3.11) 

(3.12) 

we obtain to the desired order 

exp[JgydgO$$] = f P: [ $i;“2Bo(l+$ 6, “‘y6,i’2 ) .(3.13) 

Inserting (3.13) into (3.4) we finally obtain 

^u (g12) 
T ew Lgdg’+ = ,J P: 

g 

-2 
P:qP. 

2 
16n2 i~260+xi‘Aj g2 

‘[I 

hj”26 
0 

, 
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We next expand the components of zn as follows 

2 
K;(g’, a) = _ L K”,” e2g2 

16~’ j - 
2 Kj’),” ; j = $, NS 

(16 I?, 

and 

2 ‘Go -2-n 
16”’ “0 2*1 1 

i 

(3.15) 

Kg(g’, CL) = _ s!& K (‘b 
(161?* ’ 

. (3.16) 

Inserting eqs. (3.14kO.16) into (2.12) we obtain, after dropping terms which 

vanish for Q2+ m, 

(3.17) 

where we have defined two row vectors 

z(O) = 
n C 

Ko,“, 0, K 0,” 
JI NS 1 (3.18) 

and 

- 
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it(l) = 
n 

K(lh, K(Ih, I<(l)” 
$ G NS 1 

Equation (3.17) is valid for n > 2. We next write 

! 
e2,5 LB” 

c#, g2, a) = 
G 16s’ ’ 

e26NS(1+$B&) 

j=J, 

(3.18) 

j=C 

(3.19) 

j = NS 

j= Y 

where 6 depend on the quark charges and are given in Section 4. 
I 

Inserting (3.17) and (3.19) into equation (2.13) we finally obtain for n > 2 

{’ dx x”-’ FzY(x, Q2) = ~1’ lCGn2 
[ zantbn] 

+ Zn In In 2 tb 1 *2n ’ (3.20) 

In order to obtain the last formula we have expanded g2(Q2), the solution of 

equation (2.8) with B(g) given by (3.12), in powers of iz(Q’), the effective coupling 

constant calculated in the one loop approximation, with the result 

-4 2 
@I go(Q ) ij2(Q2) = i; (Q2) - - - 
6. 16i? 

In ,” 2 

A2 
+ o(g) (3.21) 

where 
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(3.22) 

The parameters a,,, an and bn are given as follows 

a = n (3.23) 

a” 3 
n 

=zan ’ 
n >2 (3.24) 

0 

and 

KW,n 6 
bn = ti 

y &” Kth6Q yiokn (I) n 
KNS’ 6NS + 

Y &" 

I 
+q c 

Koyn 6 R” + K;in 6Ns R& 
* QJI 1 

+B”*6 
Y Y ’ 

n >2 (3.25) 

Here, we have defined 

dz (L^~o)(l+$o) , (3.26) 

Bz Y:;” an 

-- zg + d 
0 dh;h” 

4 ([ I 
0,” 2 

‘GG 
-& 

+ 28, YGoi;n + 

0,:X; 
) , (3.27) 

- 
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R:s = (y$$l):~;j+) (3.28) 

and 

(l),n CO),” 
A” = yG,c, %G 

0,” y(l),n 
+ YG$ cql 

,iq;; + yGo;;” y$h y,o;;” _ y 0;” Ydb y&y _ yco;;” ,(h YGGOyn 

260 

. (3.29) 

Equations (3.20) and (3.23)-(3.25) are the main results of our paper. Equation 

(3.23) has been previously obtained by Witten.’ On the other hand equations (3.24) 

and (3.25) are new. 

Equations above are valid for n > 2. For completeness we quote the result for 

n = 2. Since this moment depends on the unknown photon matrix element of the 

hadronic energy momentum tensor, we shall not use it in the numerical 

calculations. 

For n = 2 we have 

= a2 a2 In az 

A2 
+ Z2 In In d +b2 

A2 1 
where a2 is evaluated from (3.23) and 

*2 “a2 = - B 2 a2 - a2’ 
0 

(3.30) 

(3.31) 

(3.32) 

with a2’ given as follows 
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;I= % ‘:G 
2 --2x+B, 

Ky)+K(‘)-; 
G 

K(o) 
OJ, ’ 1 (3.33) 

The index n - 2 has been dropped on the r.h.s. of the equation (3.33). 

We finally quote for comparison the asymptotic behavior of the moments of 

the photon structure function as obtained in the simple parton model (PM) 

dx x”-~ Fzy 1 J a2Pn In 2 Q2 
0 PM ‘PM 

where 

Pn = 46 n*+n+Z 
y n(n + l)(n + 2j 

(3.34) 

(3.35) 

Notice that Pn can be obtained from an by putting there all anomalous dimensions 

but K;” and KN?” equal to zero. We shall now give all the information needed 

for the numerical evaluation of an, dn and bn. 
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IV. MAGIC NUMBERS OF ASYMPTOTIC FREEDOM 

All the quantities necessary to evaluate an, a,, and bn have been already 

calculated in the literature. It has been recognized5 in the past year that 

anomalous dimensions in two loops and the g2 corrections to CiJl, g2), i.e. 8: are 

renormalization prescription dependent. Any physical quantity cannot of course 

depend on renormalization scheme and the renormalization prescription depen- 

dences of By and of two-loop anomalous dimensions cancel in the expressions for 

(I) physical quantities. However in order for the cancellation to occur both Brand y, 

have to be calculated in the same scheme. In what follows all the expressions 

listed in this section correspond to ‘t Hooft’s minimal subtraction scheme.19 In 

fact this is the only scheme at present in which all the quantities relevant for our 

calculation are known.5’6 A nice property of this scheme is that all quantities 

below are gauge independent.” 

The formulae of this section are for SU(3) color gauge theory with f flavors. 

Quarks may have arbitrary charges although our results depend only on the average 

charge squared <e2> and the average of the fourth power of the charge < e4>. 

4.1. Anomalous Dimensions in One Loop 

For the pure hadronic sector anomalous dimensions in one loop approxima- 

tions have been calculated in refs. 1 and 2. They are’ 

Y;; = y&” = j Lnq&) +4 1 1 
[ 

” I 
j=Z J 1 

y*y = - 4f (n2 + n + 2) 
n(n + I)(n + 21 

(4.1) 

(4.2) 

(4.3) 
16(n2+n+2) 

2;” = --T “02 _ I) 
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4 
n(n-l)- (n+ l)(n+Zj (4.4) 

The anomalous dimensions Kip” and K$ are obtained from (4.2) by changing 

group theory factors. They are 

K9;” = 8 n2+n+2 
n(n + l)(n + 21 3f<e2 ’ (4.5) 

and 

2 
Kihn = 8 “, “++“I’,’ + 2r 3f [: < e4> - <e% ’ ] . (4.6) 

4.2 Two-Loop Anomalous Dimensions 

For the hadronic sector the two-loop anomalous dimensions have been 

calculated in ref. 5. We give only their numerical values in Table I since the 

corresponding analytic expressions of ref. 5 are rather complicated. The 

nondiagonal elements differ by a sign from those of ref. 5 as we use the definitions 

of Gross and Wiiczek.’ The two-loop anomalous dimensions K (I),” 
J, ’ KNS 

(I),” and 

(l),n 
KG can be obtained from yJ,G (I),n and yJh by picking in the relevant formulae 

of ref. 5 the terms proportional to CF T(R), removing T(R) and inserting relevant 

charge factors as in equations (4.5) and (4.6). As the result of this procedure we 

obtain 

K(lh _ 4 fg 
li 

- 7Bn 3f<e2> 

(IAn 
KNS 4 Bfg 3f c =5 n <e4>- <e2>’ ] 

K (IAn 
G 

= -yBn 3 4 lZg f ce2> 

- 

(4.7) 

(4.8) 

(4.9) 
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where the values of Bfg and Bgg can be found in ref. 5. Numerical values for 

K(l),“, K (l)j” and K (‘jyn are given in Table 2. 
jl NS G 

4.3. One Loop Corrections to C,(l, g2) 

These corrections have been calculated in ref. 6 and recalculated in ref. 5. 

We have 

B” NS = 8; = ; i 3 jll f- 4 !j - iii j!i + 

(4.10) 

n2+n+2 
n(n + i)(n + 2j ( ,I1 f + I) ] 

+ i y,O;“Cln 4n - y E) (4.11) 

where yE is the Euler-Macheroni constant y E = 0.5772... We shall comment on the 

terms (In 4n - y E) at the end of this section. 

By is given in terms of 8: as follows 

ZB; 
By =f (4.12) 

4.4. Parameters B,, Bl, 6$, 6NS, 6y 

6 function parameters b, and b1 have been calculated in refs. 1, 2 and ref. 

21 respectively and are given as follows 

6, = II-$ 

- 

(4.13) 
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and 

8 1 = 102-Ef 3 

For “Iv ‘NS and 6 we have y 

6 
Y 

= 3fce4> 

Q = <e2> 

6 
NS = ’ 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

This completes the list of parameters needed to evaluate an, bn and Zn. 

4.5. Comments on (In 4 tr- y,) 

The terms (In 4 tt- y,) which occur in 8” , B,&, Bz and 8” are artifacts of 
JI Y 

the dimensional regularization scheme and it should be possible to absorb them 

through a redefinition of the scale parameter A as discussed in ref. 6. In fact as 

can be shown by means of the formulae of the present section 

bn = En - an (In 4n - y,) (4.18) 

where En is free of the (In 4n - y E ) terms. Therefore equation (3.20) can be written 

as 

joldx ?’ FzY(x, Q2) = a2 an In 2 
n2 

+ an In In Qz +i; 22 n 
I 

(4.19) 

where 
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il= Re 
%‘2(ln 4n -YE) 

(4.20) 

In other words we can absorb all (In 4~ - yE) terms by redefining the parameter A. 

Numerical values for an, 2, and En are given in Table 3. 

V. NUMERICAL RESULTS 

In this section we shall evaluate the moments of the photon structure 

function as given by the formulae (3.20-3.29) and compare the results to the leading 

order and parton model predictions. We shall also invert moment equations and 

present approximate analytic expressions for the photon structure functions as 

given by the parton model, asymptotic freedom in the leading order and asymptotic 

freedom with higher order corrections. Finally we shall make a comparison of next 

to the leading order effects calculated here with those present in deep inelastic 

scattering off hadronic targets. 

First however we make a few comments. Our formulae for the structure 

functions are only exact up to the terms of O(g22, which we have not calculated. 

Generally the formula (3.20) can be written as 

d(i) 
dx x “-‘FZY(x, Q2) = a2 + b, + iJ rE)[g* Ii + iJl hg’[ E21 n . (5.1) 

0 I 

(i) The parameters an, b, and rn can be calculated in perturbation theory. The 

coefficients h!’ are on the other hand uncalculable by present methods as they 

require the values of photon matrix elements of gluon and quark operators. Since 

the dz’ are positive the first two terms in equation (5.1) will dominate at 

sufficiently large values of Q2. At small values of Q2 of 0 (few GeV2) it is 

conceivable that the remaining terms will not be negligible. The study of the latter 

terms is beyond the scope of this paper and we shall only present the results for the 

first two terms. - 
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Our second comment concerns the heavy quark mass effects which are not 

taken into account in our formulae. These mass effects occur in the Wilson 

coefficient functions, in the anomalous dimensions and in the 8 function. These 

effects have been studied by Hill and Ross ” in the leading order and we shall 

comment on this paper later. In the case of the next to the leading order 

corrections the inclusion of mass effects is a formidable task since this would 

require the calculation of renormalization group functions in a mass sensitive 

renormalization scheme. In what follows we shall present the results for f = 3 and 

f = 4 with the standard charge assignment as in the Weinberg-Salam-GIM model. 

We do not present the numerical results for f > 4 although they can be easily 

obtained from formulae (3.20-3.29). The reason is that the effect of the b quark 

even far above its production threshold is suppressed relative to the charm 

contribution by factor 16 due to its charge. On the other hand the t-quark 

contribution is not expected to be of any significance below Q2 = 100 GeV’. 

In Table 3 we have presented the numerical values for the coefficients an, an, 

En and p, as functions of n. As noted by Witten 11 an decreases faster to zero than 

p, for increasing n and therefore the photon structure function as given by the 

leading order expression is suppressed at large values of x relative to the parton 

model predictions. The parameters 5” are negative and with increasing n decrease 

slightly slower than an. Consequently the importance of higher order contributions 

increases with n. Their effect is to further suppress the structure function at large 

values of x relative to leading order predictions. 

In order to calculate the moments of the photon structure function we must 

specify the parameter A. In deep inelastic scattering off hadronic targets this 

parameter is found by fitting the theory to existing data. As discussed in refs. 23 

and 6 the scale parameter A cannot be determined meaningfully from experiment 



-22- FERMILAB-Pub-78/91-THY 

without calculating at least next to the leading order effects. In particular the 

value of A, if determined on the basis of leading order expressions, can be different 

in deep inelastic scattering off hadronic targets and in the photon-photon 

scattering discussed here. On the other hand if next to the leading order effects 

are included in the phenomenological analysis, A can be determined in a 

theoretically meaningful way for both processes. Therefore in our analysis we shall 

take the value of A which has been obtained in refs. 6 and 24 by fitting the 

asymptotic freedom formulae to the moments of F3 as measured by the BEBC 

group. 24 

As pointed out in ref. 6 even if the next to the leading order corrections are 

included in the phenomenological analysis there is some freedom in defining the 

parameter ,j or equivalently the effective coupling constant. As discussed in 

Section IV one can redefine the parameter A by absorbing in it the (In 41 -y E) 

terms. Generally one can absorb into A any constant term proportional toy 0 in 

deep-inelastic scattering off hadronic targets and proportional to an in photon- 

photon scattering. Any such redefinition of A will lead to a different numerical 

value of A extracted from experiment but the fits to the data will be consistent 

with each other up to corrections of 0 g r ). Here we shall discuss in detail only the 

@? scheme for A introduced in ref. 6 which corresponds to the absorption of the 

(In 4 TI - y,) terms as in equation (4.20). In the case of deep-inelastic scattering off 

hadronic targets this scheme minimizes next to the leading order corrections for 

the n = 2 moment. A similar scheme has been discussed by the authors of ref. 9 in 

which the next to the leading order corrections for n = 3 are minimized. The value 

of h which we have found6 by fitting the asymptotic freedom formulae to the 

moments of F3 was x = 0.5. We shall use this value in our formulae for the photon 

structure function. 
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In Fig. 2 we have plotted the quantity Fzn/(a2 In Q2/h2) for the parton 

model, asymptotic freedom in the leading order and for the asymptotic freedom 

with higher order corrections. The quantity in question is independent of Q2 for 

the cases of the parton model and asymptotic freedom in the leading order. Higher 

order corrections on the other hand introduce the Q’ dependence as follows 

2 

F:n 
In In Q- iii 

’ 2 
e 

= an+lan ii2 

12 In 
A2 

Ind 

+” 

K2 
in2 

;i2 

(5.2) 

Asymptotically the last two terms in Eq. (5.2) will go to zero and the leading order 

result will be obtained. Ail the effects discussed in connection with Table 3 are 

seen in Fig. 2. The formulae (4.19) and (3.34) can be inverted and the result written 

as follows 

F$x, Q2) = o2 2 + S(x) In In _ 
A2 

+ Rx) 1 
and 

Fl(x, 4’) 1 
2 

= a’p(x) In e 
PM ;i2 

(5.3) 

(5.4) 

for the parton model. The formula (3.34) can be inverted analytically and one 

obtains 

P(X) = 46y [ x2 + (I -x+1 x (5.6) 

- 
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which is the familiar expression of ref. 17. The formula (4.19) has a complicated n 

dependence and must be inverted numerically. We have found however approxi- 

mate analytic expressions for the functions a(x), a(x) and b(x) which for certain 

ranges of x are good representations of the exact inversion. For f = 4 they are 

given as follows 

a(x) = x [ 1.52 x”~’ + 4.38 (1 - ~1”~~ 1 for 0.3 2 x 2 0.9 (5.7) 

g(x) = x [1.12 x1’32 + 3.24 (1 - X)“~~ 1 for 0.4 ( x 5 0.9 (5.81 

b(x) = -x [ 5.29 ~1.‘~ + 19.99 (1 - xj4’19 1 for 0.4 5 x 5 0.9 . (5.9) 

The structure functions Fz(x, Q2) as given by the leading order prediction and 

higher order calculations are shown in Fig. 3. We observe that the largest effects 

of higher order corrections are at large values of x. 

So far we have used the same value of A ;n the leading order and higher order 

calculations and we have found that the higher order corrections were large. It has 

been demonstrated in ref. 6 that in the case of deep inelastic scattering off hadrons 

the asymptotic freedom formulae with higher order corrections included and 

x = 0.5 GeV could be very well approximated for 2 ( Q2 5 30 GeV2 by the leading 

order expression with A Lo = 0.73 GeV and with the unknown hadronic matrix 

elements of gluon and quark operators suitably modified relative to the higher 

order case. In the photon-photon scattering the modification can be done only in 

the value of A and it is of interest to see whether we can find a A Lo defined by 

dx xn-* 
0 

FzY(x, Q2) = 02an In (5.101 
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so that the leading order expression is approximately equal to the full expression 

(4.19) which is calculated with A = 0.5. The result of such an exercise is shown in 

Fig. 4. The following lessons can be taken from this figure: 

i) It is impossible to find bLLO which would reproduce the formula (4.19) with 

the accuracy found in the case of deep-inelastic scattering off hadronic targets. 

For fixed Q* the formula (4.19) predicts faster drop of the moments with increasing 

n that is given by the leading order formula (5.10). Also Q* dependence is slightly 

different in the two cases. 

ii) The effects of the next to the leading order corrections in photon-photon 

scattering are larger than in the deep-inelastic scattering. hLQz 1 GeV in the 

present case as compared to k. z 0.73 found in refs. 25 and 6. We recall that in 

both cases the higher order formulae are calculated with x = 0.5. 

iii) If one is interested only in 1620% accuracy then we can conclude that the 

leading order formula (5.10) can mimic the higher order expression (4.19) but AL0 

is not the same as the one found in the deep-inelastic scattering off hadronic 

targets. This illustrates the fact first pointed out by Bace23 that it is incorrect to 

use the same value of A in two different processes when next to the leading order 

corrections are not explicitly included. 

Another way to compare higher order effects in photon-photon scattering and 

in the deep inelastic scattering off hadronic targets is to cast the formula (3.20) 

and the corresponding formula for the moments of FiI” in the following form 

MY(Q2) = 2 
n 

BO 

(5.11) 

and 
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c 1 M(3) y:: 
n 

-2 23 
1+-g -2 (En + Pn) 

16n* yi 
(5.12) 

with 8, and Pn given in ref. 6. The plots of the coefficients of g2/(16,1*) in 

equations (5.11) and (5.12) as functions of n are shown in Fig. 5. The n dependence 

is similar but the effect of the next to the leading order term in the photon-photon 

scattering is significantly larger as already noted in the analysis above. 

VI. LONGITUDINAL PHOTON STRUCTURE FUNCTION 

So far we have considered only the structure function F2y. Witten” has also 

calculated the longitudinal photon structure function FLY and for completeness we 

quote his result written in our notation. 

In order to derive asymptotic freedom formula for FLY one proceeds along 

the steps of Section III with the only changes being in the coefficient functions 

Cln(l, g*, CY) which are now replaced by the following expressions 

e2& ii? 8” 
@ 16n2 h L j =JI 

e26 if-. B” 
J, & W- 

j=G 

j = NS 

(6.1) 

c 4 

2 6YB”y,L j =Y 
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B;,L = B&s,L = ; n+ t 

Bk,L = In + ?f(n + 2) 

, 

(6.2) 

(6.3) 

and gq, 6Ns and hy are defined in Section IV. 

The moments of the longitudinal photon structure function are then given as 

follows 

Jo1 dx xn-* FLy(x, Q*) = a2 ( + [K2”‘$P$,L + K:jn6NSR;;S,L] + 

(6.4) 

where 

B?J L -B&L 
O,n 

R;Lv&- YG$ 
9 d 26 

0 

BkS,L 

RE7JsJ- = ( 1 +Y& 

(6.5) 

t (6.6) 

(6.7) 

and d is given by equation (3.26). 

Notice that equations (6.5-6.7) can be obtained directly from equations (3.25), 

(3.27) and (3.28) by putting there all two-loop contributions to zero and replacing 

the parameters By by B? 
I&’ 

For comparison we quote the parton model prediction 
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0 
dx x”-*FLY (x, Q*) 1 

PM 
= 02hy B; L 

t 

We observe that both asymptotic freedom and the parton model predict scaling for 

the longitudinal structure function although the scaling functions are different in 

these two cases. As shown by Witten the renormalization effects as given by the 

first two terms in equation (6.5) are small and consequently the longitudinal 

structure function as predicted by asymptotic freedom is very similar to that 

obtained in the parton model. This is to be contrasted with the predictions for Fzy 

where the renormalization effects are large. 

VII. SUMMARY AND CONCLUSIONS 

In this paper we have calculated the photon structure function F2Y in 

asymptotically free gauge theories up to and including next to the leading order 

corrections. Our result is a straightforward generalization of Witten’s analysis 

where the photon structure function was calculated in the leading order of 

asymptotic freedom. The next to the leading order corrections found here are 

large at reasonable values of Q*. We have compared our results with the higher 

order corrections to deep inelastic structure functions and concluded that the 

higher order corrections calculated here are larger than those found in deep 

inelastic scattering. 

We have shown that not all of the higher order corrections to photon-photon 

scattering can be absorbed by redefining the parameter A. Therefore the shape of 

the photon structure function found in the leading order is modified by higher order 

effects particularly for large n or correspondingly for large values of x. This is to 

be contrasted with deep inelastic scattering off hadronic targets where the higher 

order corrections not absorbed into A could be, in the range of Q2 available, 

absorbed in the hadronic matrix elements of quark and gluon operators. We do not 

have this freedom in the photon-photon-&zattering. This makes the process in 

question particularly suitable for the theoretical study of higher order corrections. 
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Unfortunately the measurements of the photon structure functions are much more 

involved than those needed for hadronic structure functions. However, it is 

possible that the ideas discussed in this paper will be tested at PETRA, PEP and 

LEP. 

In our analysis we have neither included mass effects due to heavy quarks nor 

discussed the contributions in which photon behaves similar to a hadron; the last 

sum in equation (5.1). Both give small effects at large values of Q2 but at Q2 of 0 

(few GeV2) both could give non-negligible effect. In particular mass effects due to 

charm production could be important. In our paper we have made calculations for 

three and four flavors with all quark masses zero. At low values of Q2, 0 (few 

GeV2), the massless approximation is probably justified for the light quarks but 

certainly not justified for the charm quark contributions. 

At these low values of Q2 the charm quark contribution is expected to br 

small but for large values of Q2 our predictions for four flavors become valid. - 

study of this transition is beyond the scope of the present paper. 

Recently Hill and Ross 22 have studied mass effects in the photon-photon 

scattering in the leading order of asymptotic freedom. They find sensitivity of 

their results to the small values of p2. In particular Hill and Ross claim that for 

p”, 300 MeV2 Witten’s result should hold for light quarks whereas for smaller 

values of p2 other (non-leading) contributions could be important. We would like to 

remark only that both the matrix element <y 1 Oyl Y> and the coefficient 

C:(Q2/u2, g2, a ), which constitute Witten’s and our results, are independent of the 

value of p2. The p2 dependence which the authors study is related to the 

perturbative calculation of the matrix elements of hadronic operators such as 

‘Yl O$lY>, <YI OG IV, etc. We do not expect these matrix elements to be 

sensitive to p2 for small p2 smce this dependence should be dictated by the 

appropriate hadronic singularities. If our analysis applies at p2, 300 MeV2 it 
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should also apply at p2 = 0 independent of light quark masses. We agree however 

with Hill and Ross that the mass effects due to production of heavy quarks should 

be included in a detailed comparison with the experimental data to be obtained in 

the future. 
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TABLE CAPTIONS 

Coefficients of g4/(16n212 in the anomalous dimensions yp(JIs), 

(1) (1) (1) 
Y$ili ’ Y.~~, yGJl and YG(Z) for f = 3 and f = 4. This table has 

been calculated on the basis of the results of ref. 5. 

Coefficients of e2g2/(16rr212 in the anomalous dimensions K$ 

K& and Kk for f = 3 and f : 4. 

Numerical values of the parameters an, “a,, En and p, for f : 3 

and f = 4. 
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” 3 

2 3.247 

4 3.707 

6 3.790 

8 3.707 

10 3.577 

12 3.431 

14 3.289 

16 3.156 

18 3.031 

20 2.916 

(1) 
KNS K !I) 4 

4 3 4 3 4 

4.871 29.23 48.71 -29.23 -48.71 

5.560 33.36 55.60 -24.83 -41.39 

5.685 34.11 56.84 -23.11 -38.52 

5.560 33.36 55.60 -22.40 -37.33 

5.365 32.19 53.64 -22.05 -36.74 

5,147 30.88 51.47 -21.84 -36.40 

4.993 29.60 49.33 -21.71 -36.19 

4.733 28.40 47.33 -21.63 -36.05 

4.547 27.28 45.47 -21.57 -35.95 

4.373 26.24 43.74 -21.53 -35.88 

(1) 
KG 

Table 2 

- 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

FIGURE CAPTIONS 

Dominant contribution to the process e’e-+ hadrons + e+e-. 

Moments of the photon structure functions in units of a2 as 

predicted by the Parton Model (a), Asymptotic Freedom in the 

Leading Order (b), and Asymptotic Freedom with Higher Order 

Corrections (c,d,e). The predictions are for A = 0.5 GeV and 4 

flavors. 

Photon structure function in units of a2 as predicted by 

Asymptotic Freedom in the Leading Order (dashed lines) and 

Asymptotic Freedom with Higher Order Corrections (solid 

lines) for A= 0.5 CeV and various values of Q2. The curves 

correspond to the formulae of 5.7-5.9. The curves for leading 

order agree within a few percent of those of reference 11 over 

the range of x plotted in this figure. 

Moments of the photon structure function in units of cx2 as 

predicted by Asymptotic Freedom in the leading order with 

A = 1.0 GeV (dashed lines) and Asymptotic Freedom with 

Higher Order Corrections for A = 0.5 GeV (solid lines). 

Comparison of the coefficients of E2/16n2 in photon-photon 

scattering (solid line) and in deep-inelastic scattering (dashed 

line). 

- 
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